Metan, en riktigt potent växthusgas

Metanmolekylen byggs av 4 väteatomer bundna till en central kolatom. Varje enskild molekyl kan därför ta upp värmeenergi i form av komplicerade vibrationer [1], rörelseenergi som den omgående pytsar ut i alla riktningar till omgivningen. Detta ger upphov till växthuseffekten.

Metanmolekyl med en central kolatom och fyra väteatomer. Bindningarna är flexibla och molekylen kan därför vibrera i komplicerade mönster.

Methane in the Earth’s atmosphere is a strong greenhouse gas with a global warming potential (GWP) 84 times greater than CO2 in a 20-year time frame; methane is not as persistent a gas as CO2 (assuming no change in carbon sequestration rates) and tails off to about GWP of 28 for a 100-year time frame.[18][19][page needed][20] This means that a methane emission is projected to have 28 times the impact on temperature of a carbon dioxide emission of the same mass over the following 100 years assuming no change in the rates of carbon sequestration. Methane has a large effect but for a relatively brief period, having an estimated mean half-life of 9.1 years in the atmosphere,[19] whereas carbon dioxide is currently given an estimated mean lifetime of over 100 years.

https://en.wikipedia.org/wiki/Atmospheric_methaneMethane as a greenhouse gas

När metan oxideras [1] bildas vatten och koldioxid vilket sker spontant i atmosfären. Metanet har en halveringstid [2] om 9.1 år i atmosfären. Under första 20-årsperioden har ett metanutsläpp 84 gånger större klimatpåverkan (GWP [3]) och för 100 år är den 28 gånger större än motsvarande mängd koldioxid.

Det innebär att ‘färskutsläppt’ metan är långt potentare än koldioxid. Jag har inga siffror för första året eller liknande, men med tanke på halveringstiden så måste den vara oerhört hög.


[1] Enkelt uttryckt: När molekylen nås av värme börjar den knuffas runt samt vibrera.

[2] Detta sker omedelbart när naturgas bränns.

[3] Vi hör oftast om halveringstid för radioaktiva ämnen, den tid det tar för att hälften av en viss spontan fission skall klinga av.

[4] GWP, Global Warming Potential: https://en.wikipedia.org/wiki/Global_warming_potential

Ett spektrum av väder- och klimatintresserade

För att nå fram med väder– och klimatinformation krävs vitt skilda angreppssätt beroende på mottagaren. De som har hyfsat goda förkunskaper och gärna tänker logiskt kan ta till sig stora delar av vetenskapens resonemang. I andra änden av spektrumet bör man undvika ord med tre eller flera stavelser.

The Alarmed are convinced global warming is happening, human-caused, an urgent threat, and they strongly support climate policies. Most, however, do not know what they or others can do to solve the problem. The Concerned think human-caused global warming is happening, is a serious threat, and support climate policies. However, they tend to believe that climate impacts are still distant in time and space, thus climate change remains a lower priority issue. The Cautious haven’t not yet made up their minds: Is global warming happening? Is it human-caused? Is it serious? The Disengaged know little about global warming. They rarely or never hear about it in the media. The Doubtful do not think global warming is happening or they believe it is just a natural cycle. They do not think much about the issue or consider it a serious risk. The Dismissive believe global warming is not happening, human-caused, or a threat, and most endorse conspiracy theories (e.g., “global warming is a hoax”).

https://climatecommunication.yale.edu/about/projects/global-warmings-six-americas/

Trenden i bilden ovan är att intervjuade i gruppen Alarmed ökar rejält med 9/17 ≈ 53%, förmodlingen är det Concerned och i någon mån Cautious som släpper till.

I slutet av studieperioden utgör de nåbara (Cautious och Doubtful) 31%, nästan 1/3 av alla intervjuade. Ju fler som kan och börjar kommunicera med dem dess bättre för världens framtid.

One of the first rules of effective communication is to “know thy audience.” Climate change public engagement efforts must start with the fundamental recognition that people are different and have different psychological, cultural, and political reasons for acting – or not acting – to reduce greenhouse gas emissions.

Gruppen Dismissive, (‘klimatförnekare’ eller liknande) är redan från början en minoritet och har under den undersökta femårsperioden tappat 1/5. Vart de tar vägen i det kortare perspektivet är osäkert, med tiden är ‘etta med lock’ en logisk ändpunkt.

Gruppen Disengaged (‘Bortkopplade’) påverkas inte annat än marginellt.


7 core principles for climate change communication: https://climatevisuals.org/evidence/

Temperaturen sjunker med höjden

Man kan lära sig mer när man försöker. Igen och igen. Gång på gång har jag läst att temperaturen sjunker 6° per 1000 höjdmeter. Tvivel på att det gäller generellt från marken och upp har hela tiden funnits, men först nu finner jag en som motiverar utförligare.

För hela videon: https://youtu.be/r7SRzg8JjNc
  • Under molnbasen (där vattenångan börjar kondensera till vattendroppar) sjunker temperaturen 9,8° per 1000 höjdmeter.
  • Inne i molnen sjunker temperaturen 6° per 1000 höjdmeter.

Fuktig luft som blåser upp längs en bergssida lämnar därför ifrån sig regn och snö om berget är tillräckligt högt. På läsidan är luften torr och när den sjunker ner igen gäller det omvända.

  • När luften är torr, som på läsidan av berg, stiger temperaturen med 9,8° per 1000 meter höjdförlust. vilket gör att temperaturen på låg höjd överstiger den inkommande.

I USA är detta bekant från Death Valley [1] öster om bergskedjan Sierra Nevada, i Europa har vi Alpernas föhnvindar. [2]


[1] Temperaturen höjs ytterligare då området ligger mer än 80 meter under havsnivån. https://en.wikipedia.org/wiki/Death_Valley

[2] https://en.wikipedia.org/wiki/Foehn_wind

Grafik som klimatstrutsar nog tvekar att adressera

IPCC lanserar Working Group Interactive Atlas där du kan studera mängder av olika parametrars påverkan. Här har jag valt temperaturanomalin [1] för december – februari. Klicka på de geometriska figurerna för att se närmare data för regionen.

CMIP6 – Mean temperature (T) Change deg C – Warming 2°C SSP5 8.5 (rel. to 1850-1900) – December to February (34 models)
HadCRUT5 – Mean temperature (T) Trend deg C per decade – 1961-2015 Observations – December to February

Länk till ovanstående: https://interactive-atlas.ipcc.ch/regional-information#eyJ0eXBlIjoiQVRMQVMiLCJjb21tb25zIjp7ImxhdCI6LTI0NDYyMCwibG5nIjo3MTU0ODQsInpvb20iOjQsInByb2oiOiJFUFNHOjU0MDMwIn0sInByaW1hcnkiOnsic2NlbmFyaW8iOiJvYnNlcnZhdGlvbnMiLCJwZXJpb2QiOiIxOTYxLTIwMTUiLCJzZWFzb24iOiJEZWNGZWIiLCJkYXRhc2V0IjoiT0JTLUhhZENSVVQ1IiwidmFyaWFibGUiOiJ0YXMiLCJ2YWx1ZVR5cGUiOiJUUkVORCIsImhhdGNoaW5nIjoiU0lNUExFIiwicmVnaW9uU2V0IjoiYXI2IiwiYmFzZWxpbmUiOiJBUjUiLCJyZWdpb25zU2VsZWN0ZWQiOltdfSwicGxvdCI6eyJhY3RpdmVUYWIiOiJwbHVtZSIsIm1hc2siOiJub25lIiwic2NhdHRlcllNYWciOm51bGwsInNjYXR0ZXJZVmFyIjpudWxsLCJzaG93aW5nIjpmYWxzZX19


[1] En anomali är avvikelse från det normala.

Klimatkänslighet; halten av koldioxid vs. temperatur.

One of the most important numbers in climate science is 3°C. This isn’t about a projection of future warming or the impacts that come with it, though. It’s about how much warming you get if you double the amount of greenhouse gases in the atmosphere. That value can be made more general as a metric known as “climate sensitivity,” which describes how much warming you get for a given amount of emissions. If the number is small, we can burn a lot of fossil fuels with minimal consequences. If the number is extremely high, emissions are extraordinarily dangerous.

Källa: https://arstechnica.com/science/2020/07/huge-climate-sensitivity-study-shrinks-uncertainty-on-critical-number/
Kunskap och förståelse är inte allas mål. En minoritet nöjer sig med att sprida osäkerhet och förvirring.

Växthusgaser består av tre eller flera atomer. De kan ”studsa runt” olika frekvenser av värmestrålning (där temperaturen bestämmer frekvensen) med varierande förmåga. De viktigaste växthusgaserna i troposfären [1] är koldioxid (CO2), metan (CH3) och kväveoxid (lustgas, N2O). När de i samverkan höjer temperaturen ökar atmosfärens förmåga att ta upp vattenånga vilken i sin tur beter sig som en växthusgas.

This number (3°, min anmärkning) is commonly defined against a doubling of the concentration of CO2 in the air, in part because CO2’s effect is logarithmic and each doubling is roughly equivalent.

Det blir problem när man väljer koldioxiden som enda representant för växthuseffekten. Metan [2,3] och kväveoxid [4] är långt mer potenta men samtidigt relativt sparsamt förekommande i atmosfären. I helheten utgör metanets bidrag ungefär 20% av växthuseffekten. När metan med tiden oxideras bildas koldioxid och vatten. Kväveoxid tär också på det UV-skyddande ozon-lagret.

Det finns flera faktorer som påverkar uppvärmning och avkylning av Jorden och alla är inte välbeforskade. Av det skälet valde IPCC i sin rapport från 2007 att ange klimatkänsligheten till 1,5 – 4,5°. Målet för forskarna är att minska osäkerheten och den senaste rapporten, AR6, gör det. De anger klimatkänsligheten till 3° och sannolikt (likely) ligger den i intervallet 2° – 4°.


[1] Troposfären varierar i höjd från 9 km vid polerna till 17 km vid ekvatorn. I genomsnitt räknar man med 11 km.

[2] ”The Earth’s atmospheric methane concentration has increased by about 150% since 1750, and it accounts for 20% of the total radiative forcing from all of the long-lived and globally mixed greenhouse gases.[10]” Wikipedia

[3] ”Methane is an important greenhouse gas with a global warming potential of 34 compared to CO2(potential of 1) over a 100-year period, and 72 over a 20-year period.[47][48]

[4] Kväveoxid är upp till 265 gånger så potent som koldioxid med en livstid i atmosfären om 120 år. https://en.wikipedia.org/wiki/Nitrous_oxide

Väder och klimat korrelerar på sikt

De jag kallar klimatstrutsar fokuserar gärna på ett fåtal källor [1] och kortsiktiga variationer.

IPCC visar i sin senaste rapport (AR6) hur vädrets till synes slumpartade temperaturvariationer gradvis blir säkrare över längre tid och övergår i klimat.

IPCC AR6 – Kapitel 3 – Den gröna stapeln till höger om respektive diagram visar felmarginalen.

[1] Lägg märke till hur man klipper och klistrar ur ett begränsat antal webbsidor och bloggar. Direkta hänvisningar till peer-reviewade studier som publicerats i ansedda sammanhang förekommer sällan eller aldrig. Om det sker är sannolikheten hög att deras slutsatser är tagna ur sitt sammanhang.

Koldioxid, marknära och högre upp.

Givet att andra faktorer är att lika är det varmare vid markytan än högre upp inom troposfären. En tumregel säger att temperaturen sjunker 6° per 1 000 höjdmeter. Har du funderat över varför det är så? Om inte, ägna tanken någon minut innan du läser vidare.

Atmosfären består av 78% kväve (N2), 21% syre (O2), 0,9% argon (Ar) samt cirka 0,042% koldioxid (CO2).

Inblandningen av koldioxid i atmosfären sker inte ögonblickligen, med högkänsliga sensorer mäter man små differenser som följer vindar från utsläppen. I denna ögonblicksbild anger mörkrött höga och mörkblått lägre koncentrationer.
  • I medeltal når övre delen av troposfären 11 km höjd.
  • Då temperaturen påverkar luftens densitet (kyla gör den tätare) når den cirka 9 km vid polerna och upp till 17 km vid ekvatorn trots att lufttrycket på havsnivå är samma. Detta varierar ytterligare beroende på årstid (Jordaxeln ”lutar”) och i någon mån även väder.
  • I troposfären sjunker lufttrycket närapå linjärt med ökande höjd.
  • Ungefär 80% av atmosfärens massa finns i troposfären.
  • Hälften av atmosfärens massa finns under 5.6 km höjd där lufttrycket följaktligen är halverat.
  • Nästan allt vatten i atmosfären finns i troposfären.
  • Källa: https://en.wikipedia.org/wiki/Atmosphere_of_Earth

Alla växthusgaser består av molekyler med tre eller flera atomer till skillnad från kväve, syre och argon som utgör 99,9% av atmosfären. Växthusgaser har förmåga att ”studsa runt” värmestrålning [1] i alla riktningar, effektivare ju fler de är. Till det kommer vattenånga, också den bestående av tre atomer per molekyl. Då vatten dessutom lagrar och transporterar värme och kinetisk energi genom vindar och havsströmmar har det avgörande betydelse för vädret.

Vatten [2] deltar i atmosfärens isolering men dess massa och egenskaper varierar stort beroende på temperaturen. När vattenånga kondenserar till droppar övergår det från att fungera likt en växthusgas till att vara en svartkroppsstrålare. Om den kyls ytterligare kan den bli is och snö, goda reflektor.

Troposfärens gaser blandas väl genom vindar och konvektion och antalet molekyler av växthusgaser kommer därför att bero på lufttrycket. Kyla på hög höjd och värme på låg inom troposfären beror av antalet molekyler av växthusgaser samt även vattenmolekyler. De utgör tillsammans värmeisolering som i samverkan med rotationen räddar oss från temperatursvängningar som annars skulle drabba Jorden.

Medeltemperaturer vid Nordpolen och ekvatorn på Jorden i skydd av atmosfären och på den ‘nakna’ Månens skugg- och solsida.

Högre upp, lägre lufttryck leder till färre isolerande växthusgasmolekyler och följaktligen blir det kallare.

För att få så enhetliga mätningar som möjligt mäter man därför temperaturen om möjligt på en öppen plan plats där marken är täckt med kort gräs och på en höjd av 1,5-2 m över marken.

Många fler krav finns, läs på SMHI: https://www.smhi.se/kunskapsbanken/meteorologi/hur-mats-lufttemperatur-1.3839

Fler parametrar tillkommer. T.ex. förändras inflytandet av en växthusgas inte linjärt med antalet molekyler, de ‘första’ betyder mer än de tillkommande. I samverkan ‘pluggar’ olika växthusgaser energiutsläpp vid fler strålningsfrekvenser och adderar därmed till uppvärmningen.


[1] Temperatur beror av atomers och molekylers kinetiska energi, kort sagt hur de vibrerar och rör sig.

[2] ”Water vapor accounts for roughly 0.25% of the atmosphere by mass. The concentration of water vapor (a greenhouse gas) varies significantly from around 10 ppm by volume in the coldest portions of the atmosphere to as much as 5% by volume in hot, humid air masses, and concentrations of other atmospheric gases are typically quoted in terms of dry air (without water vapor).” Källa: https://en.wikipedia.org/wiki/Atmosphere_of_Earth

Arktis som Norra halvklotets AC under sommaren.

Avsmältningen av Arktis ismassa beskrivs vanligen och korrekt i termer av hur mycket värmeenergi som krävs. Jag funderar på hur den fungerar som luftkonditionering under sommaren i våra trakter. Läs eller skumma igenom citatet nedan så blir det lättare att följa mitt resonemang.

It takes energy to melt sea ice. How much energy? The energy required to melt the 16,400 Km3 of ice that are lost every year (1979-2010 average) from April to September as part of the natural annual cycle is about 5 x 1021 Joules. For comparison, the U.S. Energy consumption for 2009 (www.eia.gov/totalenergy) was about 1 x 1020 J. So it takes about the 50 times the annual U.S. energy consumption to melt this much ice every year. This energy comes from the change in the distribution of solar radiation as the earth rotates around the sun.

To melt the additional 280 km3 of sea ice, the amount we have have been losing on an annual basis based on PIOMAS calculations, it takes roughly 8.6 x 1019 J or 86% of U.S. energy consumption.

http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/
Under perioden 1980 – 2020 (40 år) sjönk isvolymen från 25.000 km3 till 13.000 km3. I citatet ovan utgår man från 280 km3 per år.

Isen i Arktis omsätts säsongmässigt, 16,400 km3 smälter och nästan allt återfryser varje år. ‘Nästan’ är ett försiktigt ord, i siffror blir underskottet i genomsnitt 280 km3 per år. Det motsvarar värmeenergin 8.6 x 1019 J [1] eller 86% of USA:s årliga energiförbrukning.

Runt Jorden på cirka 10 km höjd rör sig jetströmmar i hög hastighet. De fungerar ungefär som de luftslussar varuhusen tidigare använde i entréerna när det var kallt. Jetströmmen skiljer polarkyla från värme närmare ekvatorn. En del av temperaturskillnaden utgör också dess drivkraft, Corioliseffekten [2] gör att jetströmmen rör sig i huvudsak tvärs mot tryckdifferensen.

Skärmbilden är tagen 210731 strax efter 14.00. Länken visar hur det ser ut när du klickar på den. Grafiken gäller på den höjd där lufttrycket är ungefär 1/4 av det vid havsytan, cirka 10-11 km upp. https://earth.nullschool.net/#2021/07/31/0300Z/wind/isobaric/250hPa/orthographic=4.15,87.44,393/loc=7.543,51.565

När temperaturskillnaden minskar gör drivet det också. Det blir lite som att cykla långsamt, man vinglar medan jetströmmen bildar vågor, meandrar. Ibland kommer jetströmmen i resonans med sig själv runt Jorden och vågorna ‘fastnar’. Vädret kan då bli väldigt stabilt under lång tid, likt den hetta och torka som hemsökt den amerikanska västkusten de senaste veckorna.

Då ‘sommaruttagen‘ överstiger ‘vinterinsättningarna‘ minskar på sikt den Arktiska köldreserven, polarjetströmmen påverkas negativt. Det ökar sannolikheten för låsningar i vädersystemen och vi (Jorden) upplever oftare extremare väder i form av hetta, torka, köld, vindar och regn. Lite som vädret varit sedan årsskiftet.


[1] 1 Joule (J) motsvarar 1 Ws (1Watt under 1 sekund). För den som är van vid kalorier (egentligen kcal, alltså 1000 cal) i samband med mat så motsvarar de 4184 J

[2] ”Luften inuti högtryckssystem roterar i en sådan riktning att corioliskraften riktas radiellt inåt och nästan balanseras av den utåt radiellt riktade tryckgradienten. Som ett resultat, färdas luften medurs runt högtryck på norra halvklotet och moturs på södra halvklotet. Luft inuti lågtryckssystem roterar i motsatt riktning, så att corioliskraften är riktad radiellt utåt och nästan balanserar en inåt radiellt riktad tryckgradient.” https://sv.wikipedia.org/wiki/Corioliseffekten

Risker för översvämningar i Sverige

Minst 150 personer har omkommit i extrema skyfall i Europa under de senaste dagarna. I Sverige pågår ett idogt arbete med att förbereda sig för möjliga så kallade 100-årsregn, då flera städer beräknas vara i riskzonen. Göteborg, Jönköping och Örebro är några av de orter som hotas.

https://www.nyteknik.se/samhalle/har-ar-riskerna-for-oversvamning-storst-7018173

Det är vanligen fråga om statistiska hundraårsrisker för extrema regnväder, alltså knappt en gång under en livstid. Dock finns många platser där snabb vårflod ger lokala och återkommande problem.

Riskområden vid skyfall, Kristianstad. https://www.kristianstad.se/sv/omsorg-och-hjalp/trygg-och-saker/skydd-mot-oversvamningar/skyfallskarta/

Myndigheten för samhällsskydd och beredskap (MSB) har identifierat 25 områden med betydande översvämningsrisk:

Alingsås, Borås, Falsterbo/Höllviken, Falun, Göteborg, Halmstad, Haparanda, Helsingborg, Jönköping, Kalmar, Karlshamn, Karlskrona, Karlstad, Kristianstad/Åhus, Kungsbacka, Landskrona, Malmö, Norrköping, Stenungsund, Stockholm, Trelleborg, Uddevalla, Uppsala, Ystad, Örebro

Om förutsättningarna ändras, t.ex. genom klimatförändringar, kan konsekvensernas omfattning eller hundraårsrisken påverkas.

För de större städerna, Stockholm, Göteborg och Malmö, består riskerna i en förhöjning av havsvattennivån, alternativt skyfall som riskerar att orsaka främst materiella skador.

– De häftiga regn vi ser i Europa nu drabbar ofta städer eftersom vi hårdgjort våra ytor med till exempel asfalt. Då koncentreras vattnet där och kan ställa till med skador på hus, vägar och gator, säger Lars Nyberg.


Stora delar av Kristianstads kommun är lågt belägna med vattnet nära samhället i form av hav, åar, sjöar och våtmarker. Det ständigt närvarande översvämningshotet har gjort att kommunen kontinuerligt arbetar med att anpassa sig till kommande klimatförändringar.

https://www.kristianstad.se/en/bygga-bo-och-miljo/samhallsutveckling-och-hallbarhet/klimat-och-miljo/klimatanpassning/