Mätning från satelliter av den lägre atmosfärens temperatur

Satellitbaserade mätningar bygger på avancerade datamodeller som väger samman olika pseudomått till redovisade temperaturer.

Weather satellites do not measure temperature directly. They measure radiances in various wavelength bands. Since 1978 microwave sounding units (MSUs) on National Oceanic and Atmospheric Administration polar orbiting satellites have measured the intensity of upwelling microwave radiation from atmospheric oxygen, which is related to the temperature of broad vertical layers of the atmosphere. Measurements of infrared radiation pertaining to sea surface temperature have been collected since 1967

https://en.wikipedia.org/wiki/Satellite_temperature_measurements
Comparison of ground-based measurements of near-surface temperature (blue) and satellite based records of mid-tropospheric temperature (red: UAH; green: RSS) from 1979 to 2010. Trends plotted 1982-2010.

Atmosfären närmast jordytan kallas troposfären och sträcker sig i medeltal cirka 11 kilometer upp, hälften av dess massa finns under 5.5 kilometers höjd, sammanlagt 80% finns i troposfären. Värmeenergin [1] i atmosfären beror på att växthusgaser fungerar som en isolerande filt över jordytan, men även på konvektion (varm luft stiger).

Satellite datasets show that over the past four decades the troposphere has warmed and the stratosphere has cooled. Both of these trends are consistent with the influence of increasing atmospheric concentrations of greenhouse gases.

Växthusgaser i troposfären isolerar och minskar den värmeenergi som sprids vidare till stratosfären ovanför som då svalnar. Detta är ett av många skäl att växthusgaser är avgörande för stigande global temperatur.

Satellites do not measure temperature directly. They measure radiances in various wavelength bands, which must then be mathematically inverted to obtain indirect inferences of temperature.[1][2] The resulting temperature profiles depend on details of the methods that are used to obtain temperatures from radiances. As a result, different groups that have analyzed the satellite data have produced differing temperature datasets

Atmospheric temperature trends from 1979-2016 based on satellite measurements; troposphere above, stratosphere below. Notera att temperaturen nära jordytan stiger medan den högre upp sjunker.

[1] Märk väl att jag avsiktligt skriver värmeenergi istället för temperatur! Temperatur är ett mått på medelrörelseenergin hos molekyler i det du mäter. Värmeenergin beror både av temperaturen och antalet molekyler i det du mäter.

https://en.wikipedia.org/wiki/Satellite_temperature_measurements

Torka på Iberiska halvön

Vintertid brukar vädret i Portugal och Spanien vara regnigt men nu råder torka. Under januari har det regnat en fjärdedel mot normalt vilket gör att Spaniens vattendammar ligger på hälften av normal vattenkapacitet.

Den näst torrast januarimånaden sedan 2000 har registrerats i Spanien och Portugal i år, rapporterar TT. Nu kämpar bönder för att kunna mata sina djur – och vattenkraften hotas. Forskare befarar att naturkatastrofer och skogsbränder kommer bli allt vanligare i takt med klimatförändringarna som ger stigande temperaturer

Expressen Klimat 20220212: https://www.expressen.se/nyheter/klimat/varsta-torkan-pa-20-ar-i-spanien-och-portugal/

En spricka i Arktis ispansar

Under andra halvan av Maj 2020 bör istjockleken vara nära sitt maximum, ändå skedde detta.

A new study documents the formation of a 3,000-square-kilometer rift in the oldest and thickest Arctic ice. The area of open water, called a polynya, is the first to be identified in an area north of Ellesmere Island, Canada’s northernmost island, and is another sign of the rapid changes taking place in the Arctic, according to researchers.

Källa Phys.org – 14/10 -21
Enligt studien var istjockleken i området 3,5 meter eller mer.

Händelsen berodde på kraftiga vindar runt ett intensivt högtryck (1). De lyckades driva isär den tjocka isen under ett par veckor.

Mer information: G. W. K. Moore et al, First Observations of a Transient Polynya in the Last Ice Area North of Ellesmere Island, Geophysical Research Letters (2021). DOI: 10.1029/2021GL095099


[1] En orkan är när atmosfären rör sig moturs (norra halvklotet!) runt ett intensivt lågtryck. Vid ett högtryck (anti-cyclone) går vindarna medurs. https://en.wikipedia.org/wiki/Anticyclone

Förskjutningar i Jordens energiförråd

Jordens kortsiktiga väder och långsiktiga klimat beror av in- och utgående energiflöden, omfördelning mellan kortsiktiga energilager samt långsiktiga förråd.

Solen står för inkommande energi. Den domineras av UV och synligt ljus. När det synliga ljuset når mark och vatten (flytande men även vattengas, moln samt snö och is) kommer delar att reflekteras ganska opåverkat (därför kan vi se fotografier av Jorden tagna från rymden).

Resten absorberas varvid strålningens frekvens sjunker avsevärt till IR-området (värme). Denna kan användas, lagras eller stråla vidare ut via atmosfären till rymden.

Värmeenergi kan omfördelas via strålning, ledning och konvektion. I praktiken sker det bland annat via vattenströmmar i hav, avdunstning av vatten till atmosfär och moln som med vindar kan färdas avsevärda sträckor och bilda nederbörd, ibland på betydligt högre belägna platser.

Snö och is representerar värme med låg temperatur. När vatten kristalliserar (fryser) kommer avsevärda mängder värmeenergi att avlägsnas. När nollgradig is smälter åtgår lika mycket energi som för att värma samma massa (‘vikt’) nollgradiga vatten till +80°! Snö och is utgör därför stora förråd av koncentrerad ‘lågtemperaturenergi’ som aktivt påverkar både väder och klimatet.

Review article: Earth’s ice imbalance Thomas Slater et al.

Abstract

We combine satellite observations and numerical models to show that Earth lost 28 trillion tonnes of ice between 1994 and 2017.

Arctic sea ice (7.6 trillion tonnes), Antarctic ice shelves (6.5 trillion tonnes), mountain glaciers (6.1 trillion tonnes), the Greenland ice sheet (3.8 trillion tonnes), the Antarctic ice sheet (2.5 trillion tonnes), and Southern Ocean sea ice (0.9 trillion tonnes) have all decreased in mass.

Just over half (58 %) of the ice loss was from the Northern Hemisphere, and the remainder (42 %) was from the Southern Hemisphere. The rate of ice loss has risen by 57 % since the 1990s – from 0.8 to 1.2 trillion tonnes per year – owing to increased losses from mountain glaciers, Antarctica, Greenland and from Antarctic ice shelves.

During the same period, the loss of grounded ice from the Antarctic and Greenland ice sheets and mountain glaciers raised the global sea level by 34.6 ± 3.1 mm. The majority of all ice losses were driven by atmospheric melting (68 % from Arctic sea ice, mountain glaciers ice shelf calving and ice sheet surface mass balance), with the remaining losses (32 % from ice sheet discharge and ice shelf thinning) being driven by oceanic melting.

Altogether, these elements of the cryosphere have taken up 3.2 % of the global energy imbalance.

Citat ur fulltexten som finns här: https://tc.copernicus.org/articles/15/233/2021/

För att underlätta läsning av det faktaspäckade citatet har jag glesat ut den till kortare stycken. Tonnes är samma som 1000 kg.

Metan, en riktigt potent växthusgas

Metanmolekylen byggs av 4 väteatomer bundna till en central kolatom. Varje enskild molekyl kan därför ta upp värmeenergi i form av komplicerade vibrationer [1], rörelseenergi som den omgående pytsar ut i alla riktningar till omgivningen. Detta ger upphov till växthuseffekten.

Metanmolekyl med en central kolatom och fyra väteatomer. Bindningarna är flexibla och molekylen kan därför vibrera i komplicerade mönster.

Methane in the Earth’s atmosphere is a strong greenhouse gas with a global warming potential (GWP) 84 times greater than CO2 in a 20-year time frame; methane is not as persistent a gas as CO2 (assuming no change in carbon sequestration rates) and tails off to about GWP of 28 for a 100-year time frame.[18][19][page needed][20] This means that a methane emission is projected to have 28 times the impact on temperature of a carbon dioxide emission of the same mass over the following 100 years assuming no change in the rates of carbon sequestration. Methane has a large effect but for a relatively brief period, having an estimated mean half-life of 9.1 years in the atmosphere,[19] whereas carbon dioxide is currently given an estimated mean lifetime of over 100 years.

https://en.wikipedia.org/wiki/Atmospheric_methaneMethane as a greenhouse gas

När metan oxideras [1] bildas vatten och koldioxid vilket sker spontant i atmosfären. Metanet har en halveringstid [2] om 9.1 år i atmosfären. Under första 20-årsperioden har ett metanutsläpp 84 gånger större klimatpåverkan (GWP [3]) och för 100 år är den 28 gånger större än motsvarande mängd koldioxid.

Det innebär att ‘färskutsläppt’ metan är långt potentare än koldioxid. Jag har inga siffror för första året eller liknande, men med tanke på halveringstiden så måste den vara oerhört hög.


[1] Enkelt uttryckt: När molekylen nås av värme börjar den knuffas runt samt vibrera.

[2] Detta sker omedelbart när naturgas bränns.

[3] Vi hör oftast om halveringstid för radioaktiva ämnen, den tid det tar för att hälften av en viss spontan fission skall klinga av.

[4] GWP, Global Warming Potential: https://en.wikipedia.org/wiki/Global_warming_potential

Lättläst om polarjetströmmar

Polarjetströmmar på både norra och södra halvklotet bildar en slags ‘gardin’ som skiljer polaratmosfärers kyla från högre temperaturer närmare ekvatorn.

Jetströmmarna drivs av temperaturskillnader mellan in- och utsidan av ‘gardinen’ och riktningen bestäms i samverkan med corioliseffekten [1] från Jordens rotation. När skillnaden minskar går jetströmmarna långsammare och börjar meandra, ungefär som när man cyklar riktigt långsamt och vinglar.

Kyla från polartrakterna kan då tränga långt utanför ‘sitt’ område medan värme tränger fram mot isen och påskyndar smältningen. Det i sin tur minskar temperaturskillnaderna, ‘jetdrivet’, och förstärker ett udda vädermönster.

Polarjetströmmarna beter sig olika på norra och södra halvklotet. Antarktis (södra halvklotet) täcks av mycket kall is och omges av hav med få störande landmassor i närheten. Där är ‘drivet’ (fortfarande) rätt stabilt vilket minskar meandrande.

Arktis ismassa (köldcentrum) ligger inte längre väl centrerat runt Nordpolen (Jordens rotationsaxel). Dessutom löper polarjetströmmen till stora delar över land där temperaturerna stiger mycket snabbare än över is och hav. Detta tillsammans bildar en jetström som ormar / meandrar mera. Ibland blir antalet vågbildningar runt Jorden precis lagom för att komma i resonans. Då ‘fastnar’ och förstärks vädret betydligt längre.

Jag är nöjd om du läst såhär långt, men är du en nörd finns ytterligare tre länkar: https://urminsynvinkel.com/2020/01/06/flerarsis-pa-arktiska-oceanen/, https://urminsynvinkel.com/2019/07/07/vad-far-vi-inpa-med-jordens-stigande-varmelagring/ och https://en.wikipedia.org/wiki/Jet_stream


[1] Corioliseffekten beror på Jordens rotation och gör att vindar i atmosfären på norra halvklotet böjs av medsols / höger / öster (välj det som känns naturligt för dig). https://sv.wikipedia.org/wiki/Corioliseffekten

Temperaturen sjunker med höjden

Man kan lära sig mer när man försöker. Igen och igen. Gång på gång har jag läst att temperaturen sjunker 6° per 1000 höjdmeter. Tvivel på att det gäller generellt från marken och upp har hela tiden funnits, men först nu finner jag en som motiverar utförligare.

För hela videon: https://youtu.be/r7SRzg8JjNc
  • Under molnbasen (där vattenångan börjar kondensera till vattendroppar) sjunker temperaturen 9,8° per 1000 höjdmeter.
  • Inne i molnen sjunker temperaturen 6° per 1000 höjdmeter.

Fuktig luft som blåser upp längs en bergssida lämnar därför ifrån sig regn och snö om berget är tillräckligt högt. På läsidan är luften torr och när den sjunker ner igen gäller det omvända.

  • När luften är torr, som på läsidan av berg, stiger temperaturen med 9,8° per 1000 meter höjdförlust. vilket gör att temperaturen på låg höjd överstiger den inkommande.

I USA är detta bekant från Death Valley [1] öster om bergskedjan Sierra Nevada, i Europa har vi Alpernas föhnvindar. [2]


[1] Temperaturen höjs ytterligare då området ligger mer än 80 meter under havsnivån. https://en.wikipedia.org/wiki/Death_Valley

[2] https://en.wikipedia.org/wiki/Foehn_wind

Klimatkänslighet; halten av koldioxid vs. temperatur.

One of the most important numbers in climate science is 3°C. This isn’t about a projection of future warming or the impacts that come with it, though. It’s about how much warming you get if you double the amount of greenhouse gases in the atmosphere. That value can be made more general as a metric known as “climate sensitivity,” which describes how much warming you get for a given amount of emissions. If the number is small, we can burn a lot of fossil fuels with minimal consequences. If the number is extremely high, emissions are extraordinarily dangerous.

Källa: https://arstechnica.com/science/2020/07/huge-climate-sensitivity-study-shrinks-uncertainty-on-critical-number/
Kunskap och förståelse är inte allas mål. En minoritet nöjer sig med att sprida osäkerhet och förvirring.

Växthusgaser består av tre eller flera atomer. De kan ”studsa runt” olika frekvenser av värmestrålning (där temperaturen bestämmer frekvensen) med varierande förmåga. De viktigaste växthusgaserna i troposfären [1] är koldioxid (CO2), metan (CH3) och kväveoxid (lustgas, N2O). När de i samverkan höjer temperaturen ökar atmosfärens förmåga att ta upp vattenånga vilken i sin tur beter sig som en växthusgas.

This number (3°, min anmärkning) is commonly defined against a doubling of the concentration of CO2 in the air, in part because CO2’s effect is logarithmic and each doubling is roughly equivalent.

Det blir problem när man väljer koldioxiden som enda representant för växthuseffekten. Metan [2,3] och kväveoxid [4] är långt mer potenta men samtidigt relativt sparsamt förekommande i atmosfären. I helheten utgör metanets bidrag ungefär 20% av växthuseffekten. När metan med tiden oxideras bildas koldioxid och vatten. Kväveoxid tär också på det UV-skyddande ozon-lagret.

Det finns flera faktorer som påverkar uppvärmning och avkylning av Jorden och alla är inte välbeforskade. Av det skälet valde IPCC i sin rapport från 2007 att ange klimatkänsligheten till 1,5 – 4,5°. Målet för forskarna är att minska osäkerheten och den senaste rapporten, AR6, gör det. De anger klimatkänsligheten till 3° och sannolikt (likely) ligger den i intervallet 2° – 4°.


[1] Troposfären varierar i höjd från 9 km vid polerna till 17 km vid ekvatorn. I genomsnitt räknar man med 11 km.

[2] ”The Earth’s atmospheric methane concentration has increased by about 150% since 1750, and it accounts for 20% of the total radiative forcing from all of the long-lived and globally mixed greenhouse gases.[10]” Wikipedia

[3] ”Methane is an important greenhouse gas with a global warming potential of 34 compared to CO2(potential of 1) over a 100-year period, and 72 over a 20-year period.[47][48]

[4] Kväveoxid är upp till 265 gånger så potent som koldioxid med en livstid i atmosfären om 120 år. https://en.wikipedia.org/wiki/Nitrous_oxide

Koldioxid, marknära och högre upp.

Givet att andra faktorer är att lika är det varmare vid markytan än högre upp inom troposfären. En tumregel säger att temperaturen sjunker 6° per 1 000 höjdmeter. Har du funderat över varför det är så? Om inte, ägna tanken någon minut innan du läser vidare.

Atmosfären består av 78% kväve (N2), 21% syre (O2), 0,9% argon (Ar) samt cirka 0,042% koldioxid (CO2).

Inblandningen av koldioxid i atmosfären sker inte ögonblickligen, med högkänsliga sensorer mäter man små differenser som följer vindar från utsläppen. I denna ögonblicksbild anger mörkrött höga och mörkblått lägre koncentrationer.
  • I medeltal når övre delen av troposfären 11 km höjd.
  • Då temperaturen påverkar luftens densitet (kyla gör den tätare) når den cirka 9 km vid polerna och upp till 17 km vid ekvatorn trots att lufttrycket på havsnivå är samma. Detta varierar ytterligare beroende på årstid (Jordaxeln ”lutar”) och i någon mån även väder.
  • I troposfären sjunker lufttrycket närapå linjärt med ökande höjd.
  • Ungefär 80% av atmosfärens massa finns i troposfären.
  • Hälften av atmosfärens massa finns under 5.6 km höjd där lufttrycket följaktligen är halverat.
  • Nästan allt vatten i atmosfären finns i troposfären.
  • Källa: https://en.wikipedia.org/wiki/Atmosphere_of_Earth

Alla växthusgaser består av molekyler med tre eller flera atomer till skillnad från kväve, syre och argon som utgör 99,9% av atmosfären. Växthusgaser har förmåga att ”studsa runt” värmestrålning [1] i alla riktningar, effektivare ju fler de är. Till det kommer vattenånga, också den bestående av tre atomer per molekyl. Då vatten dessutom lagrar och transporterar värme och kinetisk energi genom vindar och havsströmmar har det avgörande betydelse för vädret.

Vatten [2] deltar i atmosfärens isolering men dess massa och egenskaper varierar stort beroende på temperaturen. När vattenånga kondenserar till droppar övergår det från att fungera likt en växthusgas till att vara en svartkroppsstrålare. Om den kyls ytterligare kan den bli is och snö, goda reflektor.

Troposfärens gaser blandas väl genom vindar och konvektion och antalet molekyler av växthusgaser kommer därför att bero på lufttrycket. Kyla på hög höjd och värme på låg inom troposfären beror av antalet molekyler av växthusgaser samt även vattenmolekyler. De utgör tillsammans värmeisolering som i samverkan med rotationen räddar oss från temperatursvängningar som annars skulle drabba Jorden.

Medeltemperaturer vid Nordpolen och ekvatorn på Jorden i skydd av atmosfären och på den ‘nakna’ Månens skugg- och solsida.

Högre upp, lägre lufttryck leder till färre isolerande växthusgasmolekyler och följaktligen blir det kallare.

För att få så enhetliga mätningar som möjligt mäter man därför temperaturen om möjligt på en öppen plan plats där marken är täckt med kort gräs och på en höjd av 1,5-2 m över marken.

Många fler krav finns, läs på SMHI: https://www.smhi.se/kunskapsbanken/meteorologi/hur-mats-lufttemperatur-1.3839

Fler parametrar tillkommer. T.ex. förändras inflytandet av en växthusgas inte linjärt med antalet molekyler, de ‘första’ betyder mer än de tillkommande. I samverkan ‘pluggar’ olika växthusgaser energiutsläpp vid fler strålningsfrekvenser och adderar därmed till uppvärmningen.


[1] Temperatur beror av atomers och molekylers kinetiska energi, kort sagt hur de vibrerar och rör sig.

[2] ”Water vapor accounts for roughly 0.25% of the atmosphere by mass. The concentration of water vapor (a greenhouse gas) varies significantly from around 10 ppm by volume in the coldest portions of the atmosphere to as much as 5% by volume in hot, humid air masses, and concentrations of other atmospheric gases are typically quoted in terms of dry air (without water vapor).” Källa: https://en.wikipedia.org/wiki/Atmosphere_of_Earth

Arktis som Norra halvklotets AC under sommaren.

Avsmältningen av Arktis ismassa beskrivs vanligen och korrekt i termer av hur mycket värmeenergi som krävs. Jag funderar på hur den fungerar som luftkonditionering under sommaren i våra trakter. Läs eller skumma igenom citatet nedan så blir det lättare att följa mitt resonemang.

It takes energy to melt sea ice. How much energy? The energy required to melt the 16,400 Km3 of ice that are lost every year (1979-2010 average) from April to September as part of the natural annual cycle is about 5 x 1021 Joules. For comparison, the U.S. Energy consumption for 2009 (www.eia.gov/totalenergy) was about 1 x 1020 J. So it takes about the 50 times the annual U.S. energy consumption to melt this much ice every year. This energy comes from the change in the distribution of solar radiation as the earth rotates around the sun.

To melt the additional 280 km3 of sea ice, the amount we have have been losing on an annual basis based on PIOMAS calculations, it takes roughly 8.6 x 1019 J or 86% of U.S. energy consumption.

http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/
Under perioden 1980 – 2020 (40 år) sjönk isvolymen från 25.000 km3 till 13.000 km3. I citatet ovan utgår man från 280 km3 per år.

Isen i Arktis omsätts säsongmässigt, 16,400 km3 smälter och nästan allt återfryser varje år. ‘Nästan’ är ett försiktigt ord, i siffror blir underskottet i genomsnitt 280 km3 per år. Det motsvarar värmeenergin 8.6 x 1019 J [1] eller 86% of USA:s årliga energiförbrukning.

Runt Jorden på cirka 10 km höjd rör sig jetströmmar i hög hastighet. De fungerar ungefär som de luftslussar varuhusen tidigare använde i entréerna när det var kallt. Jetströmmen skiljer polarkyla från värme närmare ekvatorn. En del av temperaturskillnaden utgör också dess drivkraft, Corioliseffekten [2] gör att jetströmmen rör sig i huvudsak tvärs mot tryckdifferensen.

Skärmbilden är tagen 210731 strax efter 14.00. Länken visar hur det ser ut när du klickar på den. Grafiken gäller på den höjd där lufttrycket är ungefär 1/4 av det vid havsytan, cirka 10-11 km upp. https://earth.nullschool.net/#2021/07/31/0300Z/wind/isobaric/250hPa/orthographic=4.15,87.44,393/loc=7.543,51.565

När temperaturskillnaden minskar gör drivet det också. Det blir lite som att cykla långsamt, man vinglar medan jetströmmen bildar vågor, meandrar. Ibland kommer jetströmmen i resonans med sig själv runt Jorden och vågorna ‘fastnar’. Vädret kan då bli väldigt stabilt under lång tid, likt den hetta och torka som hemsökt den amerikanska västkusten de senaste veckorna.

Då ‘sommaruttagen‘ överstiger ‘vinterinsättningarna‘ minskar på sikt den Arktiska köldreserven, polarjetströmmen påverkas negativt. Det ökar sannolikheten för låsningar i vädersystemen och vi (Jorden) upplever oftare extremare väder i form av hetta, torka, köld, vindar och regn. Lite som vädret varit sedan årsskiftet.


[1] 1 Joule (J) motsvarar 1 Ws (1Watt under 1 sekund). För den som är van vid kalorier (egentligen kcal, alltså 1000 cal) i samband med mat så motsvarar de 4184 J

[2] ”Luften inuti högtryckssystem roterar i en sådan riktning att corioliskraften riktas radiellt inåt och nästan balanseras av den utåt radiellt riktade tryckgradienten. Som ett resultat, färdas luften medurs runt högtryck på norra halvklotet och moturs på södra halvklotet. Luft inuti lågtryckssystem roterar i motsatt riktning, så att corioliskraften är riktad radiellt utåt och nästan balanserar en inåt radiellt riktad tryckgradient.” https://sv.wikipedia.org/wiki/Corioliseffekten